
Bilkent University
CS 353

Design Report

Group 26
School Library Database

Cemhan Kaan Özaltan - 21902695 - Section 1
Hissam Mahmoud Elsayed Faramawy - 21901253 - Section 3

Servet Gülnaroğlu - 21902474 - Section 2
Taha Batur Şenli - 21901857 - Section 3

1

Table of Contents
1. Revised ER Diagram 3

2. Database Schema 4
2.1. library_item 4
2.2. authors 4
2.3. genre 5
2.4. belongs 5
2.5. book 6
2.6. journal 7
2.7. user 7
2.8. instructor 8
2.9. student 8
2.10. librarian 9
2.11. operation 10
2.12. hold 10
2.13. borrow_return 11
2.15. warn 12
2.16. set_late_fee 12
2.17. course 13
2.18. teaches 14
2.19. takes 14
2.20. assign 15

3. Functional Components 16
3.2. Assigning a Library Item (AssignItem) 17
3.3. Hold a Library Item (HoldItem) 17
3.4. Browsing Library Items (BrowseItems) 18
3.5. BorrowOperation 18
3.6. ReturnOperation 19
3.7. Viewing Warning Messages (ViewWarnings) 19
3.8. Viewing On-Hold Library Items (ViewOnHold) 20
3.9. Viewing Borrowed Library Items (ViewBorrows) 20
3.10. Viewing Returned Library Items (ViewReturns) 21
3.11. Viewing Assigned Library Items (ViewAssigned) 21
3.12. Registering a New User (RegisterUser) 21
3.13. Registering a New Library Item (RegisterItem) 22
3.14. View a Library Item (ViewItem) 22
3.15. View User’s Profiles (ViewProfile) 23

2

3.16. Warning Users (WarnUser) 23
3.17. Fining Late Users (SetLateFee) 24
3.18. Algorithms 24

4. User Interface Design & SQL Statements 25
4.1. Welcome Page 25
4.2. Login Page 25
4.3. Register A New User (from Librarian account) 26
4.4. Browse And Hold Library Items 29
4.5. Assigning Books To Students (from instructor account) 31
4.6. Viewing Assigned Books (from student account) 32
4.7. Viewing On-Hold Items 33
4.8. Viewing Borrowed Items 34
4.9. Viewing Returned Items 35
4.10. Viewing Warning Messages 36
4.11. Viewing users (from Librarian account) 37
4.12. Selecting users (from Librarian account) 38
4.13. Lending Item To User (from Librarian account) 39
4.14. Returning Item To User (from Librarian account) 40
4.15. Warning User (from Librarian account) 41
4.16. Fine User (from Librarian account) 42
4.17. Registering A New Item (from Librarian account) 43

5. Advanced Database Components 44
5.1. Reports 44
5.2. Views 44
5.3. Triggers 45
5.4. Constraints 45
5.5. Stored Procedures 46

6. Implementation Details 47

7. Website 47

8. References 47

3

1. Revised ER Diagram

Figure 1: Revised ER Diagram

Note: Librarian actions are done through operations to make actions on the same item
at different dates unique. The hold relationship set has a date attribute which will be
added to its primary key in the schema to make holds on the same item at different
dates unique. Register relationship sets will not be translated into schemas since they
only exist to make functionalities explicit in the ER diagram and do not hold useful data.

4

2. Database Schema
The following relation schemas define our database, the attributes of the relations, their
domains and referential integrity information. We have also verified that the relations are
at least BCNF, which automatically makes them a part of 3NF.

2.1. library_item
Relational Schema
library_item(catalog_id: int, title: varchar(20), call_no: int, publish_date: date,
publish_year: int, is_available: boolean, language: varchar(20), type: varchar(10),
publisher: varchar(20), description: varchar(50))

Candidate Keys
{(catalog_id)}

Functional Dependencies
catalog_id → title call_no publish_date publish_year is_available language type
publisher description

Normal Form
BCNF

Creation
CREATE TABLE library_item(

catalog_id char(10),

title varchar(20),

call_no int,

publish_date date,

publish_year int,

is_available boolean,

language varchar(20),

type varchar(10),

publisher varchar(20),

description varchar(50),

PRIMARY KEY (catalog_id)

);

2.2. authors
Relational Schema
authors(catalog_id: int, author: varchar(20))

catalog_id: Foreign key to library_item

Candidate Keys

5

{(catalog_id, author)}

Functional Dependencies
None

Normal Form
BCNF

Creation
CREATE TABLE authors(

catalog_id int,

author varchar(20),

PRIMARY KEY (catalog_id, author),

FOREIGN KEY (catalog_id) REFERENCES library_item(catalog_id) ON UPDATE

CASCADE ON DELETE RESTRICT

);

Note: Authors is a multivalued attribute, therefore translated to a schema.

2.3. genre
Relational Schema
genre(genre_name: varchar(20))

Candidate Keys
{(genre_name)}

Functional Dependencies
None

Normal Form
BCNF

Creation
CREATE TABLE genre(

genre_name varchar(20),

PRIMARY KEY (genre_name)

);

2.4. belongs
Relational Schema
belongs(catalog_id: int, genre_name: varchar(20))

catalog_id: Foreign key to library_item
genre_name: Foreign key to genre

6

Candidate Keys
{(catalog_id, genre_name)}

Functional Dependencies
None

Normal Form
BCNF

Creation
CREATE TABLE belongs(

catalog_id int,

genre_name varchar(20),

PRIMARY KEY (catalog_id, genre_name),

FOREIGN KEY(catalog_id) REFERENCES library_item(catalog_id) ON UPDATE

CASCADE ON DELETE RESTRICT,

FOREIGN KEY(genre_name) REFERENCES genre(genre_name) ON UPDATE CASCADE

ON DELETE RESTRICT

);

2.5. book
Relational Schema
book(catalog_id: int, edition: int, print_location: varchar(20))

catalog_id: Foreign key to library_item

Candidate Keys
{(catalog_id)}

Functional Dependencies
catalog_id → edition print_location

Normal Form
BCNF

Creation
CREATE TABLE book(

catalog_id int,

edition int,

print_location varchar(20),

PRIMARY KEY (catalog_id),

FOREIGN KEY (catalog_id) REFERENCES library_item(catalog_id) ON UPDATE

CASCADE ON DELETE RESTRICT

);

7

2.6. journal
Relational Schema
journal(catalog_id: int, volume: int, issue: int)

catalog_id: Foreign key to library_item

Candidate Keys
{(catalog_id)}

Functional Dependencies
catalog_id → volume issue

Normal Form
BCNF

Creation
CREATE TABLE journal(

catalog_id int,

volume int,

issue int,

PRIMARY KEY (catalog_id),

FOREIGN KEY (catalog_id) REFERENCES library_item(catalog_id) ON UPDATE

CASCADE ON DELETE RESTRICT

);

2.7. user
Relational Schema
user(user_id: int, username: varchar(20), first_name: varchar(20), last_name:
varchar(20), hashed_password: varchar(20), status: boolean, cell_phone: varchar(12),
email: varchar(20))

Candidate Keys
{(user_id)}

Functional Dependencies
user_id → username first_name last_name hashed_password status cell_phone, email

Normal Form
BCNF

Creation
CREATE TABLE user(

user_id int,

username varchar(20) NOT NULL,

8

first_name varchar(20) NOT NULL,

last_name varchar(20) NOT NULL,

hashed_password varchar(20) NOT NULL,

status boolean,

cell_phone varchar(12),

email varchar(20),

PRIMARY KEY (user_id)

);

2.8. instructor
Relational Schema
instructor(user_id: int, dept: varchar(5), office_room: varchar(10))

user_id: Foreign key to user

Candidate Keys
{(user_id)}

Functional Dependencies
user_id → dept office_room

Normal Form
BCNF

Creation
CREATE TABLE instructor(

user_id int,

dept varchar(5),

office_room varchar(10),

PRIMARY KEY (user_id),

FOREIGN KEY (user_id) REFERENCES user(user_id) ON UPDATE CASCADE ON

DELETE RESTRICT

);

2.9. student
Relational Schema
student(user_id: int, dept: varchar(5), is_grad: boolean)

user_id: Foreign key to user

Candidate Keys
{(user_id)}

9

Functional Dependencies
user_id → dept is_grad

Normal Form
BCNF

Creation
CREATE TABLE student(

user_id int,

dept varchar(5),

is_grad boolean,

PRIMARY KEY (user_id),

FOREIGN KEY (user_id) REFERENCES user(user_id) ON UPDATE CASCADE ON

DELETE RESTRICT

);

2.10. librarian
Relational Schema
librarian(user_id: int, working_library: varchar(10))

user_id: Foreign key to user

Candidate Keys
{(user_id)}

Functional Dependencies
user_id → working_library

Normal Form
BCNF

Creation
CREATE TABLE librarian(

user_id int,

working_library varchar(10),

PRIMARY KEY (user_id),

FOREIGN KEY (user_id) REFERENCES user(user_id) ON UPDATE CASCADE ON

DELETE RESTRICT

);

2.11. operation
Relational Schema
operation(operation_id: int, date: date, user_id: int)

10

user_id: Foreign key to librarian

Candidate Keys
{(operation_id)}

Functional Dependencies
operation_id → date user_id

Normal Form
BCNF

Creation
CREATE TABLE operation(

operation_id int,

date date,

user_id int,

PRIMARY KEY (operation_id),

FOREIGN KEY (user_id) REFERENCES librarian(user_id) ON UPDATE CASCADE

ON DELETE RESTRICT

);

Note: create relationship set is removed and the primary key of the one side is added to
the many side with total participation.

2.12. hold
Relational Schema
hold(catalog_id: int, user_id: int)

catalog_id: Foreign key to library_item
user_id: Foreign key to user

Candidate Keys
{(catalog_id, user_id)}

Functional Dependencies
None

Normal Form
BCNF

Creation
CREATE TABLE hold(

catalog_id int,

user_id int,

date date,

is_cleared boolean,

11

PRIMARY KEY (catalog_id, user_id, date),

FOREIGN KEY (catalog_id) REFERENCES library_item(catalog_id) ON UPDATE

CASCADE ON DELETE RESTRICT,

FOREIGN KEY (user_id) REFERENCES user(user_id) ON UPDATE CASCADE ON

DELETE RESTRICT

);

2.13. borrow_return
Relational Schema
borrow_return(catalog_id: int, operation_id: int, user_id: int, is_returned: boolean)

catalog_id: Foreign key to library_item
operation_id: Foreign key to operation
user_id: Foreign key to user

Candidate Keys
{(catalog_id, operation_id, user_id)}

Functional Dependencies
catalog_id operation_id user_id → is_returned

Normal Form
BCNF

Creation
CREATE TABLE borrow_return(

catalog_id int,

operation_id int,

user_id int,

is_returned boolean,

PRIMARY KEY (catalog_id, operation_id, user_id),

FOREIGN KEY (catalog_id) REFERENCES library_item(catalog_id) ON UPDATE

CASCADE ON DELETE RESTRICT,

FOREIGN KEY (operation_id) REFERENCES operation(operation_id) ON

UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (user_id) REFERENCES user(user_id) ON UPDATE CASCADE ON

DELETE RESTRICT

);

2.15. warn
Relational Schema

12

warn(catalog_id: int, operation_id: int, user_id: int, description: varchar(50), is_cleared:
boolean)

user_id: Foreign key to user
catalog_id: Foreign key to library_item
operation_id: Foreign key to operation

Candidate Keys
{(catalog_id, operation_id, user_id)}

Functional Dependencies
catalog_id operation_id user_id → is_cleared description

Normal Form
BCNF

Creation
CREATE TABLE warn(

catalog_id int,

operation_id int,

user_id int,

is_cleared boolean,

description varchar(50),

PRIMARY KEY (catalog_id, operation_id, user_id),

FOREIGN KEY (catalog_id) REFERENCES library_item(catalog_id) ON UPDATE

CASCADE ON DELETE RESTRICT,

FOREIGN KEY (operation_id) REFERENCES operation(operation_id) ON

UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (user_id) REFERENCES user(user_id) ON UPDATE CASCADE ON

DELETE RESTRICT

);

2.16. set_late_fee
Relational Schema
set_late_fee(catalog_id: int, operation_id: int, user_id: int, amount: int, date_paid: date)

user_id: Foreign key to user
catalog_id: Foreign key to library_item
operation_id: Foreign key to operation

Candidate Keys
{(catalog_id, operation_id, user_id)}

Functional Dependencies
catalog_id operation_id user_id → amount date_paid

13

Normal Form
BCNF

Creation
CREATE TABLE set_late_fee(

catalog_id int,

operation_id int,

user_id int,

amount int,

date_paid date,

PRIMARY KEY (catalog_id, operation_id, user_id),

FOREIGN KEY (catalog_id) REFERENCES library_item(catalog_id) ON UPDATE

CASCADE ON DELETE RESTRICT,

FOREIGN KEY (operation_id) REFERENCES operation(operation_id) ON

UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (user_id) REFERENCES user(user_id) ON UPDATE CASCADE ON

DELETE RESTRICT

);

2.17. course
Relational Schema
course(course_id: int, course_name: varchar(20))

Candidate Keys
{(course_id)}

Functional Dependencies
course_id → course_name

Normal Form
BCNF

Creation
CREATE TABLE course(

course_id int,

course_name varchar(20),

PRIMARY KEY (course_id)

);

2.18. teaches
Relational Schema

14

teaches(course_id: int, user_id: int)
course_id: Foreign key to course
user_id: Foreign key to user

Candidate Keys
{(course_id, user_id)}

Functional Dependencies
None

Normal Form
BCNF

Creation
CREATE TABLE teaches(

course_id int,

user_id int,

PRIMARY KEY (course_id, user_id),

FOREIGN KEY (course_id) REFERENCES course(course_id) ON UPDATE CASCADE

ON DELETE RESTRICT,

FOREIGN KEY (user_id) REFERENCES user(user_id) ON UPDATE CASCADE ON

DELETE RESTRICT

);

2.19. takes
Relational Schema
takes(course_id: int, user_id: int)

course_id: Foreign key to course
user_id: Foreign key to user

Candidate Keys
{(course_id, user_id)}

Functional Dependencies
None

Normal Form
BCNF

Creation
CREATE TABLE takes(

course_id int,

user_id int,

PRIMARY KEY (course_id, user_id),

15

FOREIGN KEY (course_id) REFERENCES course(course_id) ON UPDATE CASCADE

ON DELETE RESTRICT,

FOREIGN KEY (user_id) REFERENCES user(user_id) ON UPDATE CASCADE ON

DELETE RESTRICT

);

2.20. assign
Relational Schema
assign(catalog_id: int, student_user_id: int, instructor_user_id: int)

catalog_id: Foreign key to library_item
student_user_id: Foreign key to student(user_id)
instructor_user_id: Foreign key to instructor(user_id)

Candidate Keys
{(catalog_id, student_user_id, instructor_user_id)}

Functional Dependencies
None

Normal Form
BCNF

Creation
CREATE TABLE assign(

catalog_id int,

student_user_id int,

instructor_user_id int,

PRIMARY KEY (catalog_id, student_user_id, instructor_user_id),

FOREIGN KEY (catalog_id) REFERENCES library_item(catalog_id) ON UPDATE

CASCADE ON DELETE RESTRICT,

FOREIGN KEY (student_user_id) REFERENCES student(user_id) ON UPDATE

CASCADE ON DELETE RESTRICT,

FOREIGN KEY (instructor_user_id) REFERENCES instructor(user_id) ON

UPDATE CASCADE ON DELETE RESTRICT

);

Note: All IDs are integers as instructor and student IDs have different lengths and char
cannot be used. Also, randomized unique IDs are needed for library items, which can
much easily be done through a global integer value. All schemas are in BCNF, therefore
also in 3NF which is its superset.

16

3. Functional Components
Below are the use cases of our system, along with the required algorithms for these
functionalities.

Figure 2: Use Case Diagram

3.1. Login
Prototype of the function:
boolean login(int user_id, String password)

High-level algorithm of the function:
Check if such a user exists
Return true if operation is successful (user exists and credentials are correct)

Use case:
Participating Actor:

➡ User
Entry Condition:

17

➡ User enters to system
Exit Condition:

➡ User logs in
Flow of Events:

➡ User enters user_id
➡ User enters password
➡ User clicks “Login” button
➡ User is directed to dashboard

3.2. Assigning a Library Item (AssignItem)
Prototype of the function:
boolean assignALibraryItemToAStudent(int student_user_id, int instructor_user_id)

High-level algorithm of the function:
Insert row into “assign” relation with student’s and instructor’s id
Insert row into “create” relation with librarian’s id and operation id
Return true if the assigning was successful

Use case:
Participating Actor:

➡ Instructor
Entry Condition:

➡ Instructor clicks “Assign to students” button which is located on a library item
Exit Condition:

➡ Instructor cancels the operation || Assigning is successful
Flow of Events:

➡ Instructor clicks “Assign to students” button which is located on a library item
➡ Instructor enters user_id of the Student
➡ Instructor clicks “Assign” button
➡ A dialog box shows up
➡ Instructor confirms assigning by clicking “OK” button

3.3. Hold a Library Item (HoldItem)
Prototype of the function:
boolean holdLibraryItem(int catalog_id, int user_id)

High-level algorithm of the function:
Create a hold relation between the user and the library item

Use case:
Participating Actor:

➡ Student, Instructor
Entry Condition:

➡ Actor clicks “Hold” or “Hold Next” Button
Exit Condition:

18

➡ Actor holds the library item
Flow of Events:

➡ Actor clicks “Hold” or “Hold Next” Button
➡ Actor fills input boxes such as title, author, genre, or published year
➡ Actor clicks “Search” button
➡ Matched library items are listed

Special/Quality Requirements:
➡ Actors may leave input boxes empty if the property (title, author, genre, or

published year) does not matter.

3.4. Browsing Library Items (BrowseItems)
Prototype of the function:
LibraryItem[] browseLibraryItem(String title, String author, String genre, int
publishedYear)

High-level algorithm of the function:
Find library items according to the search specifications

Use case:
Participating Actor:

➡ User
Entry Condition:

➡ User enters to search page
Exit Condition:

➡ Matched Library Items are listed
Flow of Events:

➡ User clicks “Filter” button
➡ User fills input boxes such as title, author, genre, or published year
➡ User clicks “Search” button
➡ Matched Library Items are listed

Special/Quality Requirements:
➡ Users may leave input boxes empty if the property (title, author, genre, or

published year) does not matter.

3.5. BorrowOperation
Prototype of the function:
boolean borrowLibraryItem(int librarian_user_id, int borrower_user_id, int
library_item_id)

High-level algorithm of the function:
Insert row into “borrow” relation with user, library, item and operation
Insert row into “create” relation with librarian’s id and operation id

Use case:
Participating Actor:

19

➡ Librarian
Entry Condition:

➡ Library item is not already borrowed or is on-hold to another student.
Exit Condition:

➡ Borrows successfully or borrowing fails
Flow of Events:

➡ Student asks for the library item that is held by them (face-to-face, outside the
system)

➡ Librarian registers the borrowing action to the system

3.6. ReturnOperation
Prototype of the function:
boolean returnLibraryItem(int librarian_user_id, int borrower_user_id, int library_item_id)

High-level algorithm of the function:
Insert row into “return” relation with user, library, item and operation
Insert row into “create” relation with librarian’s id and operation id

Use case:
Participating Actor:

➡ Librarian
Entry Condition:

➡ Someone has a library item to return, approaches librarian
Exit Condition:

➡ Returns successfully
Flow of Events:

➡ Person returns the book to a librarian (face-to-face, outside the system)
➡ Librarian registers the returning action to the system

3.7. Viewing Warning Messages (ViewWarnings)
Prototype of the function:
String[] getWarningMesssages(int student_user_id)

High-level algorithm of the function:
Select warnings with specified user_id from “warn” relation

Use case
Participating Actor:

➡ Student, Instructor
Entry Condition:

➡ Actor has a warning
Exit Condition:

➡ Actor exits warning messages page
Flow of Events:

20

➡ Actor clicks the “Warnings” button

3.8. Viewing On-Hold Library Items (ViewOnHold)
Prototype of the function:
LibraryItem[] getOnHoldLibraryItems(int student_user_id)

High-level algorithm of the function:
Select library items from “hold” relation with specified user id

Use case:
Participating Actor:

➡ Student, Instructor
Entry Condition:

➡ Actor has on-hold library items
Exit Condition:

➡ Actor exits on-hold page
Flow of Events:

➡ Actor clicks the “On-Hold Library Items” button
Special/Quality Requirements:

➡ Actors are able to only view their current holds.

3.9. Viewing Borrowed Library Items (ViewBorrows)
Prototype of the function:
LibraryItem[] getBorrowedLibraryItems(int student_user_id)

High-level algorithm of the function:
Select library items from “borrow” relation with specified user

Use case:
Participating Actor:

➡ Student, Instructor
Entry Condition:

➡ Actor has borrowed a library item in the past
Exit Condition:

➡ Actor exits borrowed library items page
Flow of Events:

➡ Actor clicks the “Borrowed Library Items” button
Special/Quality Requirements:

➡ Actors are able to view their previous borrowings along with currents.

3.10. Viewing Returned Library Items (ViewReturns)
Prototype of the function:
LibraryItem[] getReturnedLibraryItems(int student_user_id)

21

High-level algorithm of the function:
Select library items from “return” relation with specified user id

Use case:
Participating Actor:

➡ Student, Instructor
Entry Condition:

➡ Actor has returned a library item in the past
Exit Condition:

➡ Actor exits returned library items page
Flow of Events:

➡ Actor clicks the “Returned Library Items” button
Special/Quality Requirements:

➡ Actors are able to view their previous returns along with currents.

3.11. Viewing Assigned Library Items (ViewAssigned)
Prototype of the function:
LibraryItem[] getAssignedLibraryItems(int student_user_id)

High-level algorithm of the function:
Select library items from “assign” relation with specified user id

Use case:
Participating Actor:

➡ Student
Entry Condition:

➡ Student has been assigned a book by an instructor
Exit Condition:

➡ Student exits assigned library items page
Flow of Events:

➡ Student clicks the “Assigned Library Items” button

3.12. Registering a New User (RegisterUser)
Prototype of the function:
boolean registerANewAccount(int librarian_user_id, User new_user)

High-level algorithm of the function:
Insert row into “register_user” relation with properties of “new_user”

Use case:
Participating Actor:

➡ Librarian
Entry Condition:

➡ User is not already registered
Exit Condition:

22

➡ User registered successfully
Flow of Events:

➡ Librarian asks for username, name, cell phone number, email to user
(face-to-face, outside the system)

➡ Librarian enters input
➡ Librarian clicks “register” button

3.13. Registering a New Library Item (RegisterItem)
Prototype of the function:
boolean registerANewLibraryItem(int librarian_user_id, LibraryItem library_item)

High-level algorithm of the function:
Insert row into “register_item” relation with properties of “library_item”

Use case:
Participating Actor:

➡ Librarian
Entry Condition:

➡ Librarian is on “Register New Library Item” page
➡ Library item is not already registered

Exit Condition:
➡ Register operation is successful

Flow of Events:
➡ Librarian enters specifications of the library item
➡ Librarian clicks “Register Library Item” button

3.14. View a Library Item (ViewItem)
Prototype of the function:
LibraryItem getALibraryItem(int catalog_id)

High-level algorithm of the function:
Return the specified library item

Use case:
Participating Actor:

➡ User
Entry Condition:

➡ User searched a library item
Exit Condition:

➡ Library item is shown
Flow of Events:

➡ User clicks “Details” button which locates on each library item
➡ The details of the library item show up

23

3.15. View User’s Profiles (ViewProfile)
Prototype of the function:
User getAUser(int user_id)

High-level algorithm of the function:
Select a specific user
Use case:
Participating Actor:

➡ Librarian
Entry Condition:

➡ Librarian is in the “All Users” page
Exit Condition:

➡ Librarian sees users’ account
Flow of Events:

➡ Librarian clicks “See Account” button which located on each row of students

3.16. Warning Users (WarnUser)
Prototype of the function:
boolean warnAUser(int librarian_user_id, int user_id_to_be_warned)

High-level algorithm of the function:
Insert row into the “warn” relation

Use case:
Participating Actor:

➡ Librarian
Entry Condition:

➡ Librarian is on the user’s account page
Exit Condition:

➡ Librarian sends a warning
Flow of Events:

➡ Librarian clicks “Warn” button which is located in the user’s account
➡ A popup shows up
➡ Librarian enters description
➡ Librarian clicks “Warn” button

3.17. Fining Late Users (SetLateFee)
Prototype of the function:
boolean fineALateUser(int librarian_user_id, int user_id, int library_item_catalog_id,
float amount)

High-level algorithm of the function:
Check if the user has the library item
Insert row into “set_late_fee” with the parameters

24

Use case:
Participating Actor:

➡ Librarian
Entry Condition:

➡ User doesn’t return the book on time
➡ Librarian is on the users’ account page

Exit Condition:
➡ Librarian fines the user

Flow of Events:
➡ Librarian clicks “Late fee” Button
➡ A popup shows up
➡ Librarian enters amount
➡ Librarian confirms late fee

3.18. Algorithms
The used algorithms are given with their use cases. With these algorithms, the array
data structure of JavaScript, which is similar to a dynamic array, will be used along with
a few additional model classes such as LibraryItem, Book and Journal for more
structured code. Further algorithms will be used for the purpose of checking constraints
such as password length, which will handle and prevent undesired exceptions and
perform the necessary warnings and actions through high-level algorithms implemented
in code according to the constraints of the system and other requirements.

4. User Interface Design & SQL Statements
The mockup design of our user interface is as follows, along with the required SQL
statements for the functionalities of each page.

25

4.1. Welcome Page

This is the welcome page. It will appear to all types of users if they are not logged in. Users can
click Login to start logging in.

26

4.2. Login Page

This is the Login page. Users enter their userID and password.

Query for Checking Credentials
SELECT *

FROM user

WHERE user_id = @user_id AND hashed_password = @hashed_password;

This query returns the user where it matches the information entered.

27

4.3. Register A New User (from Librarian account)
For Student

INSERT INTO user

FROM user

WHERE user_id = @user_id AND hashed_password = @hashed_password;

28

For Instructor

Statements for Registering New User
INSERT INTO user VALUES (@user_id, @username, @first_name, @last_name,

@hsashed_pasword, true, @cell_phone, @email);

Initially, status is clear, therefore true is inserted. Depending on the selected type, one of
the following will be executed right after (password is randomly generated):

INSERT INTO student VALUES (@user_id, @dept, @is_grad);

INSERT INTO instructor VALUES (@user_id, @dept, @office_room);

29

4.4. Browse And Hold Library Items
From Student account

Statements for Holding Item For Student
SELECT *

FROM library_item

WHERE title = @search_title;

INSERT INTO hold VALUES (@catalog_id, @user_id, @date)

UPDATE library_item SET is_available = false WHERE catalog_id =

@catalog_id;

30

From Instructor account

Statements for Holding Item For Instructor
INSERT INTO hold VALUES (@catalog_id, @user_id, @date);

UPDATE library_item SET is_available = false WHERE catalog_id =

@catalog_id;

This inserts a new row in the hold table with id of the item/catalog, user id, and date.

31

4.5. Assigning Books To Students (from instructor account)

After finding the desired items, the instructor can click “Assign to students” to open the
assigning window where the instructor can find all their students, search for some of
them and assign the book to them.

Statements for Assigning Item For Student
INSERT INTO assign VALUES (@catalog_id, @student_user_id,

@instructor_user_id);

This inserts a new row in the assign table with id of the item/catalog, user id, and
instructor id.

32

4.6. Viewing Assigned Books (from student account)

Students can view the assigned book from the “Assigned Items” section.

Statements for Viewing Assigned Books
SELECT title, type, username FROM instructor NATURAL JOIN assign NATURAL

JOIN library_item

WHERE student_user_id = @user_id;

This Returns title, type and username, of the assigned books.

33

4.7. Viewing On-Hold Items

Student can view their On-Hold items from “My Items/ On-Hold”

Statements For Viewing Assigned Books
SELECT title, date FROM user NATURAL JOIN hold NATURAL JOIN library_item;

This returns the title and date of the on-hold book by the student.

34

4.8. Viewing Borrowed Items

Students can view their Borrowed items from “My Items/ Borrowed”.

Statements for Viewing Borrowed Books
SELECT title, type, date FROM user NATURAL JOIN borrow_return NATURAL JOIN

library_item;

This Returns title, type, date, of borrowed books.

35

4.9. Viewing Returned Items

Students can view their Returned items from “My Items/Returned”.

Statements for Viewing Returned Books
SELECT title, type, date FROM user NATURAL JOIN borrow_return NATURAL JOIN

library_item WHERE is_returned = true

This Returns title, type, date, of returned books.

36

4.10. Viewing Warning Messages

Students can view their Warning messages from the “Warning” section .

Statements for Viewing Warnings
SELECT description, is_cleared, date FROM user NATURAL JOIN warn NATURAL

JOIN library_item NATURAL JOIN operation WHERE is_cleared = false

This Returns description/content, is_clear, and date of a warning.

37

4.11. Viewing users (from Librarian account)

Statements for Browsing Users
SELECT user_id, name FROM user;

This Returns userID and name of users.

38

4.12. Selecting users (from Librarian account)

Statements for Selecting A User
SELECT user_id FROM user WHERE user_id = @user_id;

This returns the userID of the selected user.

39

4.13. Lending Item To User (from Librarian account)

Statements for Lending An Item to A User
INSERT INTO borrow_return VALUES (@catalog_id, @operation_id, @user_id,

false)

UPDATE library_item SET is_available = false WHERE catalog_id =

@catalog_id

This inserts a new row to the borrow_return table with information of catalog_id/ itemID,
operation id, and user id.

40

4.14. Returning Item To User (from Librarian account)

Statements for Returning An Item from A User
INSERT INTO borrow_return VALUES (@catalog_id, @operation_id,

@user_id,true)

UPDATE library_item SET is_available = true WHERE catalog_id = @catalog_id

This inserts a new row to the borrow_return table with information of catalog_id/ itemID,
operation id, and user id.

41

4.15. Warning User (from Librarian account)

Statements for Sending Warning
INSERT INTO operation VALUES (@operation_id, @date, @user_id);

INSERT INTO warn VALUES @catalog_id, @operation_id, @user_id,

@description);

This inserts a new row to the warn table with information of catalog_id/ itemID, operation id,
description, and user id.

42

4.16. Fine User (from Librarian account)

Statements for Setting Late Fee
INSERT INTO operation VALUES (@operation_id, @date, @user_id);

INSERT INTO set_late_fee VALUES (@catalog_id, @operation_id, @user_id,

@amount, @date_paid);

This inserts a new row to the set_late_fee table with information of catalog_id/ itemID, operation
id, amount, date, and user id.
Note: operation_id randomly determined.

43

4.17. Registering A New Item (from Librarian account)

Statements for Registering A new Item
INSERT INTO library_item VALUES (@catalog_id, @title, @type,

@publish_year, @publisher)

UPDATE library_item SET catalog_id = @catalog_id, title= @title, type=

@type, publish_year= @publish_year, publisher= @publisher,

This inserts a new row to the library_item table with information of catalog_id/ itemID, title, type,
publish year, and publisher.

5. Advanced Database Components
The advanced database components we will use, such as triggers, views and
constraints, are listed as follows.

44

5.1. Reports
The following reports will provide interesting and needed statistics about the system.

Total Number of Library Items for Each Genre
SELECT genre_name, count(*) AS cnt

FROM library_item NATURAL JOIN belongs NATURAL JOIN genre

GROUP BY genre_name;

Total Number of Library Items That Are Currently Borrowed
SELECT count(*) as cur_borrowed_cnt

FROM borrow_return

WHERE is_returned = false;

Borrow Counts of Each Library Item Which Has Been Borrowed At Least Once
SELECT catalog_id, count(*) as borrow_cnt

FROM borrow_return

GROUP BY catalog_id;

5.2. Views
Users View for Librarians
Librarians will use the following view to see all users since they should not see login
credentials.
CREATE VIEW users_for_librarian AS

SELECT user_id, username, first_name, last_name, status, cell_phone, email

FROM user;

Users With Restricted Status for Librarians
Librarians will use this view to access students and instructors who are currently not
able to borrow books until they pay their fees.
CREATE VIEW restricted_users AS

SELECT *

FROM user

WHERE status = false;

List of Currently Borrowed Items for Librarians
Currently borrowed items will be listed with this view in order to make the librarian’s task
of detecting and setting late fees quicker.
CREATE VIEW currently_borrowed AS

SELECT catalog_id

45

FROM borrow_return

WHERE is_returned = false;

5.3. Triggers
The following triggers perform automatic operations that preserve the consistency of our
system

Set Users With Late Fees as Restricted Users
DELIMITER //

CREATE TRIGGER set_restricted AFTER INSERT ON set_late_fee

FOR EACH ROW

BEGIN

UPDATE user

SET status = false

WHERE NEW.user_id = user.user_id;

END //

DELIMITER ;

Set Users Who Paid Their Fees to Clear Status
DELIMITER //

CREATE TRIGGER remove_restricted AFTER UPDATE ON set_late_fee

FOR EACH ROW

BEGIN

UPDATE user

SET status = true

WHERE NEW.user_id = user.user_id;

END //

DELIMITER ;

Note: Triggers are in MySQL syntax, where NEW denotes the new row, which is slightly
different than examples given in the slides.

5.4. Constraints
1. Users must register to the system through a librarian in order to use it.
2. Passwords are at most 20 and at least 6 characters long.
3. A user can put 5 items on hold at a time.
4. A user can borrow 5 items at a time.

46

5. Users must pay their pending late fees if they are in the restricted status in order
to make further holds or borrows. Otherwise, they will be unable to use the
system.

6. An item cannot be held, borrowed or returned at the same time more than once
(logical error otherwise, must be returned to be borrowed again and vice versa).

7. All fields must be filled when registering a user by a librarian (not the case for
items as some details may be unknown or non-existent).

Other constraints are specified in the table creation statements, such as primary keys,
foreign keys and conditions on what to do when a foreign key is updated or deleted,
along with not null values.

5.5. Stored Procedures
The following stored procedures will be used due to the frequent need for them.

Login Check
Returns a table with 1 row if login successful, no rows if else.
DELIMITER //

CREATE PROCEDURE login(IN uid int, IN pass varchar(20)) BEGIN

SELECT *

FROM user

WHERE user_id = uid AND hashed_password = pass;

END //

DELIMITER ;

Browse Library Items by Title
Most common search method, with the only filter being the title of the item.
DELIMITER //

CREATE PROCEDURE search_by_title(IN search_title varchar(20)) BEGIN

SELECT *

FROM library_item

WHERE title = search_title;

END //

DELIMITER ;

6. Implementation Details
As our database management system (DBMS), we will use MySQL 8.0.28, which can
be accessed through the MySQL Workbench software and supports all modern SQL
features required by this course. For the backend implementation of our application, we
will use the Node.js library of JavaScript, along with the React.js library for the frontend.

47

The testing of the application will be done locally through npm, and later will be
deployed through GitHub facilities. The required libraries will also be acquired through
npm. Finally, HTML and CSS will be used in the design and styling of the user interface.

7. Website
The website of this project can be accessed from the following link:
https://kaanozaltan.github.io/school-library-database

8. References
[1] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database system concepts. New
York, NY: McGraw-Hill, 2020.

https://kaanozaltan.github.io/school-library-database

